

SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Soil Mechanics(18CE0154)

Course & Branch: B.Tech - AGE

Year & Sem: III-B.Tech & I-Sem Regulation: R18

UNIT –I

INTRODUCTION TO SOIL MECHANICS AND INDEX PROPERTIES OF SOILS

1	a	Define the following:	[L1] [CO1]	[2M]
		Flow index.	[] 1] [CO1]	[OM]
	b	Toughness index.	[L1] [CO1]	[2M]
	c	Liquidity index.	[L1] [CO1]	[2M]
	d	Plasticity index.	[L1] [CO1]	[2M]
	e	Shrinkage index.	[L1] [CO1]	[2M]
2	a)	Explain the phenomenon of formation and transportation of soils.	[L2] [CO1]	[5M]
	b)	Explain with sketches of various types of soil structures.	[L2] [CO1]	[5M]
3	a)	Explain the formation of soil by weathering in detail.	[L2] [CO1]	[5M]
	b)	Discuss the characteristics and construction of kaolinite and Illite minerals groups.	[L2] [CO1]	[5M]
4	a)	Using three phase diagrams of soil, derive an expression for water content in terms of Void ratio, Specific gravity and degree of saturation.	[L2] [CO1]	[6M]
	b)	A saturated soil sample has a water content of 25% and unit weight of 20 kN/m ³ . Determine the Specific gravity of the solid particles, dry unit weight and void ratio.	[L3] [CO1]	[4M]
5	satu	ng three phase diagrams of soil, derive an expression for trated unit weight of soil in terms of void ratio, unit ght of water, specific gravity and degree of saturation.	[L2] [CO1]	[10M]
6	afte spec	ample of clay soil of volume 1×10^{-3} m ³ and weight 17.62 N, or being dried out in an oven had a weight of 13.68 N. If the cific gravity of the particle was 2.69 find void ratio, saturated tweight, dry unit weight and water content.	[L3] [CO1]	[10M]
7	a)	A soil has a liquid limit of 25% and flow index of 12%. If the plastic limit is 15% determine the plasticity index and toughness index. If the water content of the soil is in natural condition in the	[L3] [CO1]	[6M]

	field is 20%, find the liquidity index and relative consistency.		
	b) What was the relative density. Write the importance of this term?	[L1] [CO1]	[4M]
8	a) Explain Relative density.	[L2] [CO1]	[4M]
	b) How to determine field density by using sand replacement method.	[L2] [CO1]	[6M]
9	a) Briefly explain the Procedure of core cutter method.	[L2] [CO1]	[5M]
	b) Explain Determination of specific gravity in the laboratory.	[L2] [CO1]	[5M]
10	a) Describe in detail about wet and dry sieve analysis of soils.	[L2] [CO1]	[6M]
	b) What are the consistency limits?	[L1] [CO1]	[4M]

UNIT –II PERMEABILITY OF SOILS AND EFFECTIVE STRESS PRINCIPLES

1	a	what is meant by Darcy's law?	[L1] [CO2]	[2M]
	b	What is meant by effective stress and write expression?	[L1] [CO2]	[2M]
	С	What is flow net?	[L1] [CO2]	[2M]
	d	What is meant by capillary rise?	[L1] [CO2]	[2M]
	e	Write the formula for falling head permeability test. Explain the	[L1] [CO2]	[2M]
		terms?		
2	a	Explain the phenomenon of capillary rise in soil and write an	[L2] [CO2]	[6M]
		expression for the Capillary rise.		
				[4M]
	b) What is Darcy's law? What are its limitations?	[L1] [CO2]	[41/1]
3	í	a) A constant head permeability test was run on a sand sample 30cm	[L3] [CO2]	[5 M]
		in length and 20 cm ² in area. When a loss of head was 60 cm, the		
		quantity of water to be collected in 2 minutes was 250ml.		
		Determine the coefficient of permeability of soil.		
	_			
	l	b) How would you determine the average permeability of a soil	[L2] [CO2]	[5 M]
		deposit consisting of number of layers? What is its use in soil		
	***	engineering?	FX 01 FG 021	5403/57
4		hat are the different methods for determination of coefficient of	[L2] [CO2]	[10M]
_	_	rmeability in a laboratory. Explain any one method?	[1 2] [002]	F4.0 N /F3
5		splain the constant head permeability test with the help of neat sketch?		[10M]
6		falling head permeability test was performed on a sample of clean,	[L3] [CO2]	[10M]
		iform sand. One minute was required for the initial head of 100cm		
		fall to 50cm in the stand pipe of cross-sectional area 1.50cm ² . If the		
		mple was 4cm in diameter and 30cm long, calculate the coefficient		
7		permeability of sand.	[I 0] [CO0]	r =N/ (1
7	a	Explain factors affecting the permeability of soils?	[L2] [CO2]	[5]VI]
	1 _h	Estimate the quantity of flow of water through a sail mass in a 200		
	ט	Estimate the quantity of flow of water through a soil mass in a 300		
		sec period when a constant head of 1m is maintained. The length of the sample is 150 mm and the cross-Sectional area is 100×100	[L3] [CO2]	
		mm. The coefficient of permeability of the soil sample		[5M]
		is 1×10^{-1} mm/s.		
8	W	hat is flow net? Explain the characteristics and uses of flow net?	[L2] [CO2]	[10M]
9		splain in details about Quick sand condition.	[L2] [CO2]	[10M]
		a) Prove that the effective stress (σ') for a standard soil can be	[L2] [CO2]	[5M]
10		expressed as		• • •
		$\sigma'=\sigma-u$ Where $\sigma=$ total stress, $u=$ pore water pressure		
		b) An 8m thick layer of stiff saturated clay ($\gamma = 19 \text{ kN/m}^3$) is		
		underlain by a layer of sand. The sand is under an artesian		
		pressure of 5m. Calculate the maximum depth of cut that can be	[L3] [CO2]	[5 M]
		made without causing a heave.		

UNIT –III STRESS DISTRUBUTION IN SOILS AND COMPACTION OF SOILS

	STRESS DISTRUBUTION IN SOILS AND COMPACTION OF SOILS										
1	a	what is meant	by cor	npactio	n of so	il?				[L1] [CO4]	[2M]
	b	Write the form	nula fo	r Bouss	sinesq's	equati	on for p	point load.		[L1] [CO3]	[2M]
	С	What is mean	t by zei	ro air v	oid line	??				[L1] [CO4]	[2M]
	d	Discuss about	optim	um moi	sture c	ontent.				[L1] [CO4]	[2M]
	e	What is relativ	ve com	paction	1?					[L1] [CO4]	[2M]
2	De	erive an expres	sion fo	r vertic	al stres	s at a p	oint du	e to a point	load,	[L2] [CO3]	[10M]
	us	ing Boussinesc	q's theo	ory.							
3		xplain Westerg	aard's t	theory 1	for the o	determi	nation	of the verti	cal	[L2] [CO3]	[10M]
4		ress at a point. concentrated lo	oad of 2	2000kN	l is app	lied at	the grou	und surface	.	[L3] [CO3]	[10M]
		etermine the ve									
		ad. Also calcul			-	-		•			
		n but at a horiz				-			1		
5		rectangular for								[L3] [CO3]	[10M]
	kN	N/m ² . Determin	e the v	ertical	stress a	t a poin	t p loca	ated and at	a depth		
		2.5 m.									
6	a) Explain the concept of 'Pressure Bulb' in soils. [L2]							[L2] [CO3]	[4M]		
	b) What do you		stand b	y 'Pres	sure bu	lb'? Illı	ustrate with	sketches	[L1] [CO3]	[6M]
7	Fx	plane methographic plain the stand		octor te	st with	heln of	neat ck	retch		[L2] [CO4]	[10M]
8		escribe in detai								[L2] [CO4]	[10M]
9		hat are the fact								[L2] [CO4]	[10M]
10		ne following da							gravity=		
	2.0					•			•		
	۷.۱	03									
	M	loisture]		
	CC	ontent (%)	2	4	5.8	6.7	7.8	10			
		vet		•	3.0	0.7	7.0	10		[L3] [CO4]	[10M]
	de	ensity (Kn/m ³)	20.4	20.9	21.4	22.2	22.4	22.0			
	Determine the OMC and maximum dry density. Draw 'Zero-air-void line.										

Course Code: 18CE0154

UNIT- IV CONSOLIDATION OF SOILS

1	a Coefficient of compressibility.	[L1] [CO5]	[2M]
	b Coefficient of volume change.	[L1] [CO5]	[2M]
	c Compression index.	[L1] [CO5]	[2M]
	d Expansion index.	[L1] [CO5]	[2M]
	e Recompression index.	[L1] [CO5]	[2M]
2	Describe in detail about initial consolidation, primary consolidation, secondary consolidation.	[L2] [CO5]	[10M]
3	Describe the consolidometer test. Show how the results of this test are used to predict the rate of settlement and the magnitude of settlement.	[L2] [CO5]	[10M]
4	Discuss the Terzaghi's theory of consolidation, state the various assumptions and their validity.	[L2] [CO5]	[10M]
5	Discuss the spring analogy for primary consolidation. What are its uses.	[L2] [CO5]	[10M]
6	Obtain the differential equation defining the one-dimensional consolidation as given by Terzaghi listing the various assumptions	[L2] [CO5]	[10M]
7	A clay stratum, 5m thick has an initial void ratio of 1.50 and the effective overburden pressure of 120kN/m ² when the sample is subjected to an increases pressure of 120kN/m ² the void ratio reduces to 1.90. Determine the volume of compressibility and final settlement of stratum.	[L3] [CO5]	[10M]
8	Calculate the final settlement of the clay layer with an increase of pressure of 30kN/m^2 at mid height of layer take $\gamma = 10\text{kN/m}^3$.	[L3] [CO5]	[10M]
9	A clay stratum, 7m thick has an initial void ratio of 2.05 and the effective overburden pressure of 140 kN/m² when the sample is subjected to an increases pressure of 140 kN/m² the void ratio reduces to 1.44. Determine the volume of compressibility and final settlement of stratum.	[L3] [CO5]	[10M]
10	The laboratory consolidation data for undisturbed clay sample are as follows $e_{1=1.00}, \sigma_1 = 85 \text{kN/}m^2, e_{2=0.80}, \sigma_2 = 465 \text{kN/}m^2$ determine the void ratio for a pressure of $\sigma_3 = 600 \text{KN/}m^2$	[L3] [CO5]	[10M]

UNIT –V SHEAR STRENGTH OF SOILS

1	a What is meant by liquification of soil?	[L1] [CO6] [2M]
	b Explain the merits and demerits of triaxial test.	[L1] [CO6] [2M]
	c Write the formula for major and minor principle stress.	[L1] [CO6] [2M]
	d What do you understand by shear strength of soils?	[L1] [CO6] [2M]
	e Write the merits and demerits of vane shear test.	[L1] [CO6] [2M]
2	Describe the direct shear test. What are merits and demerits?	[L2] [CO6] [10M]
3	Explain the triaxial shear test? What are the advantages of triaxial shear	[L2] [CO6] [10M]
	test over the direct Shear test?	
4	What is unconfined compression test? Sketch the apparatus used what are its advantages over triaxial test?	[L2] [CO6] [10M]
5	Write short notes on	[L1] [CO6] [10M]
	a) Mohr's circle b) Explain the Mohr's coulomb strength envelope.	
6	Describe the vane shear test with a neat sketch.	[L2] [CO6] [10M]
7	The stresses at failure on the failure plane in a cohesion less soil mass	[L3] [CO6] [10M]
	was Shear stress = 5 kN/m^2 ; Normal stress = 18 kN/m^2 . Determine the	
	resultant stress on the failure plane, the angle of internal friction of the	
	soil and the angle of inclination of the failure plane to the major	
	principal plane.	
8	A 10.0 1 7.2 1' 1' 1'	[] 2] [CO() [10M]
0	A vane, 10.8 cm long, 7.2 cm in diameter, was pressed into a soft clay	[L3] [CO6] [10M]
	at the bottom of a bore hole. Torque was applied and the value at	
	failure was 45 N-m. Find the shear strength of the clay on a horizontal plane.	
9		[1 2] [CO6] [10 M]
	A triaxial compression test on a cohesive sample cylindrical in shape	[L3] [CO6] [10M]
	yields the following effective Stresses: Major Principal stress8 mN/m ²	
	Minor principal stress2 mN/m ²	
	Angle of inclination of rupture plane is 60° to the horizontal. Present	
	the above data, by means of a Mohr's circle of stress diagram. Find the	
	cohesion and angle of internal friction.	
10	The stresses at failure on the failure plane in a cohesion less soil mass	[L3] [CO6] [10M]
	was Shear stress = 4 kN/m^2 ; Normal stress = 10 kN/m^2 . Determine the	
	resultant stress on the failure plane, the angle of internal friction of the	
	soil and the angle of inclination of the failure plane to the major	
	principal plane.	

Prepared by:

Mr. P. VASUDEVA REDDY